
Learning Highway Ramp Merging Via Reinforcement Learning with
Temporally-Extended Actions

Samuel Triest1, Adam Villaflor2 and John M. Dolan2

Abstract— Several key scenarios, such as intersection nav-
igation, lane changing, and ramp merging, are active areas
of research in autonomous driving. In order to properly
navigate these scenarios, autonomous vehicles must implicitly
negotiate with human drivers. Prior work in driving behaviors
presents reinforcement learning as a promising technique, as
it can leverage data as well as the underlying decision-making
structure of driving with interaction. We apply a hierarchical
approach to decision-making, where we train a high-level policy
using reinforcement learning, and execute the policy’s output on
a low-level controller. This hierarchical structure helps increase
the policy’s overall safety, and allows the learning component
to be agnostic to the low-level control scheme. We validate our
approach on a simulation using real-world highway data and
find improved results compared to prior work in ramp merging.

I. INTRODUCTION
Autonomous driving-related technology has been a major

research topic for the last several decades. Although there
exist a number of commercially available advanced driving
assistance systems (ADAS) for highway driving in today’s
vehicles, there remain a number of scenarios that are difficult
for ADAS. Such scenarios, which include highway ramp
merging, are challenging for ADAS to properly negotiate
because of the need to interact with other vehicles. De-
signing agents that can successfully execute these merging
maneuvers in a wide variety of driving conditions is a major
challenge, as the ego-vehicle must be able to interpret the
intent of other vehicles and react accordingly. Furthermore,
the long adoption window of autonomous vehicles means
that autonomous vehicles will share the road with human
drivers for some time. This necessitates that autonomous
agents be able to interact with drivers in a human-like way.

Given the above challenges, there is recent work in data-
driven approaches to designing autonomous vehicle behav-
iors. Representative data-driven techniques for designing
these agents include probabilistic graphical models [1], [2],
reinforcement learning [3], [4], and imitation learning via
inverse reinforcement learning [5].

Many reinforcement learning-based approaches rely on
learning the merging policy end-to-end. That is, they train a
policy to output driving controls (such as acceleration and
heading) given an observation. Unlike previous methods, we
propose a hierarchical structure in which the trained pol-
icy instead outputs high-level actions given an observation,
which is then executed by some rule-based controller.

1Samuel Triest is with the Computer Science Department
of University of Rochester, Rochester, NY 14627 USA,
striest@u.rochester.edu

2Adam Villaflor and John M. Dolan are with The Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213 USA

II. RELATED WORK

Work in designing merge behaviors for autonomous ve-
hicles has been considered by a number of researchers, and
several representative solutions exist as a result.

In the 2007 DARPA Urban Grand Challenge, Urmson et
al. [6] use a slot-based approach, where a number of potential
merge slots (i.e., between car 1 and car 2, between car 2 and
car 3) are identified. The feasibility of each slot is evaluated
using a rule-based planner, and the ego-vehicle uses a motion
planner to attempt to merge into the best slot.

More recently, a number of learning-based approaches to
ramp-merging have been considered. Dong et al. [1], [2],
[7] use probabilistic graphical models (PGMs) to estimate
the host vehicle’s intent to yield. Given the intent to yield
from the PGM, the merging vehicle can use traditional
control techniques to execute the merge. The design of the
PGM relies on observed velocity data from a fixed number
of past timesteps, as well as the time-to-arrival to a fixed
merge point. By encoding the relationship between these
observations and intent to yield in a PGM, the authors are
able to predict a given host vehicle’s intent to yield to a
given merge vehicle [1]. The authors extend this framework
to apply to multiple host and merge vehicles without the
assumption of a fixed merge point [2], [7].

Hu et al. [3] and Bouton et al. [4] use reinforcement
learning to solve the merging problem. Hu et al. use an actor-
critic-based approach, where a centralized and decentralized
critic are used together to encourage vehicles to maximize
their own performance while still acting cooperatively. Bou-
ton et al. employ a single-agent approach based on Deep Q-
Learning (DQN) [8] with an additional belief on the cooper-
ativeness of the drivers in the scenario. This belief is used as
additional input to their policy. Both RL-based approaches
use a low-level action space of acceleration changes (∆a)
discretized into the set {−1,−0.5, 0,+0.5,+1}m/s2 as well
as two additional actions to set the acceleration (a) to 0m/s2

or −4m/s2. Both approaches assume that merging happens
at a fixed point, and that the ego-vehicle follows a pre-
determined path to the merge point.

Hu et al. [3] and Mukadam et al. [9] incorporate low-
level controllers into their reinforcement learning algorithms
via a masking mechanism. At a given state, a low-level
controller is used to determine feasible actions. The policy is
not allowed to execute the infeasible actions, thus improving
safety and learning speed (though no ablation studies are
provided to quantify the improvement in learning speed.)

In a recent survey of RL applications to autonomous

driving, Aradi [10] notes that RL approaches to merging
often attempt to learn a direct mapping from observation
to vehicle control. This often takes the form of a 1-D
action space over longitudinal accelerations [3], [4], but
may include steering control [11], as well as lane-change
primitives [12].

In addition to using temporally-extended actions to execute
merging behaviors, this paper attempts to validate some
traditional RL-based approaches on real highway data. These
data are collected from the Next Generation Simulation
dataset for highway driving (NGSIM) [13], which provides
a challenging set of merging scenarios where vehicles do
not conform to a single analytical model of driver behavior.
We also propose a different method of using reinforcement
learning (temporally-extended actions) to execute merge be-
haviors.

III. BACKGROUND

We introduce background material on partially observable
Markov decision processes (POMDPs) and reinforcement
learning (RL) to familiarize the reader with our terminology
and notation.

A. Partially Observable Markov Decision Processes

A POMDP is defined by a tuple (S,A, T ,O, R,O, γ, d0),
where S,A,O are the state space, action space and observa-
tion space, respectively, R,O are the reward and observation
models, T is the transition dynamics, and γ is the discount
factor. d0 is the initial state distribution of the POMDP.

A policy π provides a means of selecting actions for a
given state s in a traditional MDP. For POMDPs, we assume
that the policy does not have access to the true state s, and
instead has access to an observation o ∼ O(s). In this work,
we consider π to be a stochastic policy. That is, for a given
observation ot, π(ot) is a probability distribution over the
elements of A. The POMDP is transitioned to a new state
according to:

st+1 ∼ T (·, at ∼ π(ot), st)

The efficacy of a policy π is determined through the
expected discounted sum of rewards, which we express as:

J(π) = E
s0∼d0,at∼π(st,·),
st+1∼T (st,at,·)

[ΣTt=0γ
tR(st, at, st+1)]

B. Reinforcement Learning

Reinforcement learning provides a means of optimizing a
policy π to solve

θ∗ = arg max
θ

J(πθ)

where π is parameterized by θ, often as a neural network.
We can optimize a policy πθ iteratively using the gradient

of J(π) with respect to θ. This gradient takes the form:

∇θJ(θ) = E
τ∼π

[ΣTt=t′∇θ log π(at|st)Qπ(st, at)] (1)

Fig. 1. The merging problem - the ego vehicle (in red) needs to move from
the merging lane to the host lane without disrupting the host vehicles (in
blue). Two ramp geometries are shown - the top geometry does not contain
an auxiliary lane, while the bottom one does.

where Qπ(st, at) denotes the expected discounted sum of
rewards from taking action at in state st. This quantity can
be computed via a Monte-Carlo sample of trajectory returns
[14], or via some parameterized estimator (such as another
neural network) [15].

C. Options Framework and Semi-Markov Decision Pro-
cesses

The options framework [16] is an extension to traditional
Markov decision processes that allows for hierarchical se-
lection of actions. The options framework allows for a set
of sub-policies or options of the form < Ii, πi, βi > that
interact with a traditional MDP. πi is a policy that maps
states to one-step actions, Ii is a set of states in which policy
πi can be executed, and βi is a function s→ [0, 1] denoting
a probability that the policy πi will terminate in state s.
Options can also be Semi-Markov; that is, they can take as
input a history h comprised of a fixed number k of previous
states.

In addition to the set of options, the options framework
allows for a policy µ that selects options π, given a state
s. Sutton et al. note that this framework is equivalent to the
Semi-Markov decision process (SMDP) and techniques used
to solve SMDPs (such as RL [17]) can be applied to the
options framework.

IV. PROBLEM FORMULATION
A. The Merging Problem

In this work, we consider the merging problem to be
one in which a merging vehicle is attempting to enter the
lane of a host vehicle. The merging problem is illustrated
in Figure 1. In general, the host vehicle has right-of-way
and the merging vehicle is expected to yield to the host
vehicle. A behavior that is able to successfully negotiate the
merging problem will allow the merging vehicle to safely
enter the host vehicle’s lane with minimal disruption to the
host vehicle. For this work, we will consider the ego-vehicle
to be a merging vehicle.

B. Merging as a POMDP
In order to use reinforcement learning techniques to design

a high-level policy, we formulate highway merging as a
partially observable Markov decision process (POMDP).

Fig. 2. Diagram of the ego-vehicle’s observation space. The ego-vehicle is
in red. The vehicles in {vlead, v2fore, v

1
fore, v

1
rear, v

2
rear} are depicted, as

well as {sfront, smid, srear} and the merge point. Features are extracted
from these entities according to the procedure outlined in section IV.B.2.

1) States: Our state representation consists of the kine-
matic information of all vehicles in the merging scenario
(position, velocity, acceleration, heading). Position, velocity
and acceleration for non-ego vehicles are obtained through
replaying data from NGSIM. Heading is not directly pro-
vided, but is easily computable using historical position
information (i.e. θt = tan−1(yt−yt−1

xt−xt−1
)).

We define a terminal state as one in which the ego-
vehicle is colliding with another vehicle, or if the ego-vehicle
successfully drives 50m past the merge point. We choose a
point a significant distance beyond the actual merge point to
encourage the policy to merge safely (i.e., avoid aggressively
entering the host lane and crashing immediately afterwards).

2) Observations: Due to factors such as occlusion and
sensor inaccuracies, it is unreasonable to assume that the
ego-vehicle can access the true state of the merging POMDP.
As such, we limit the ego-vehicle’s observation to vehicles in
its immediate vicinity. In addition, the observation contains
additional information derived from the state s that is relevant
to the merging problem.

Instead of global position, the ego-vehicle observes dis-
placements (∆xmp,∆ymp) from a fixed merge point in a
lane-relative frame. The ego-vehicle is also only able to
observe the information of a limited subset of vehicles - the
vehicle immediately in front of it, as well as four vehicles
in the host lane, being the two closest vehicles with positive
longitudinal displacement, and the two closest vehicles with
negative longitudinal displacement. We denote this set as
V = {vlead, v2front, v1front, v1rear, v2rear}. The ego-vehicle is
given a tuple of (x, y, v, t, l, w) for each of the vehicles in
V , where x, y are the longitudinal and lateral displacement
to the ego-vehicle, v, t are velocity and lane-relative heading,
respectively, and l, w are the vehicle’s length and width. By
using this particular neighbor-choosing scheme, we are also
guaranteed to have three potential merging slots defined:
S = {sfront, smid, srear}. sfront, smid, srear are defined
by the tuples (v2front, v

1
front), (v

1
front, v

1
rear), (v

1
rear, v

2
rear)

respectively. From each slot in S, we extract a tuple (d, v),
where d is the length of the slot, and v is the rate at which
d is changing. These values are derived from the positions
and velocities of the vehicles that define the given slot. We
concatenate all of these features together in order to construct
our O(s).

3) Actions: Unlike prior RL-based approaches to
merging, we use a high-level action space in our
POMDP formulation. Our action space is the set
aε{vlead, v2fore, v1fore, v1rear}, where each element of the set
corresponds to a distance-keeping behavior given by an
underlying rule-based controller πC(−→o , a). Distance-keeping
to each of these vehicles (except vlead) corresponds to
choosing a slot to merge into. We can incorporate these
actions into our action space by using πC as a Semi-Markov
option < I, πC , β > where:

I = S

π(h, u) =

{
1 if u = πC(hN)

0 otherwise
.

β(h) =

{
1 if |h| = k

0 otherwise

where u denotes a low-level action, and N denotes the
current history length. Note that although histories of obser-
vations h are used to formally define the Semi-Markov option
for πC , πC is only dependent on the current observation
−→o = hN . As noted by Bradke et al., if the transition times
for all actions are the same, an SMDP can be treated as
a traditional MDP. The various distance-keeping targets can
be viewed as a non-learned set of options. Details of the
interaction between the high-level action a and low-level
controller C are given in Section V.

4) Reward: Our reward function is designed as follows:

r(st) = 10 ∗ success(st) + 0.05 ∗ (xt − xt−1), (2)

where success is 1 if the ego-vehicle is in a success state, and
is -1 if the ego-vehicle is in a colliding state (both functions
are 0 otherwise). We define a success state as the ego-vehicle
being 50m past the merge point in the host lane. x denotes
the longitudinal position of the ego-vehicle.

The first term encourages the agent to successfully merge
without collision, while the last term encourages the agent to
make forward progress. Since the simulation terminates when
the ego-vehicle collides with another vehicle, colliding has
an additional implicit penalty of preventing the agent from
accruing any future reward.

V. METHODOLOGY

A. Hierarchical Control

We split the merging process into two distinct layers: high-
level actions, and low-level control. The two layers interact in
that the high-level actions specify behaviors that are executed
by the low-level control.

Ultimately, our decision-making system takes the overall
form:

−→ut = Cψ(−→ot |πθ(−→ot))

where −→ot is the vehicle’s observation at time t, πθ is
a function that produces high-level actions, and Cψ is a

function that produces low-level control given a high-level
action, and is parameterized by ψ (note that in our work,
C is a controller with adjustable parameters ψ and not a
deep neural network). Of particular importance to the success
of this procedure is that the high-level agent and low-level
controller run at different frequencies fπ and fC , where fπ is
much lower than fC . Since the high-level agent is designed
to produce behaviors instead of control, it can be run at a
much lower frequency while the actual control is generated
at fC via the low-level controller, conditioned on the high-
level action.

This overall procedure is presented in Algorithm 1. It is
assumed that the algorithm runs at fC . Essentially, at every
timestep, the low-level controller outputs a control action
conditioned on the high-level action. Every fC timesteps, the
high-level agent is able to choose a new high-level action.

Algorithm 1: End-to-end Control via HRL
Input: Merging POMDP M with transition and

observation models TM ,OM respectively,
high-level agent π and its frequency fπ ,
low-level controller C and its frequency fC

Output: Acceleration and steering at and θt
while not done do

ot ∼ OM (st)
if t % fC == 0 then

vtarget = π(ot)
end
−→ut = C(ot|vtarget)
st ∼ TM (·,−→ut , st)
t = t+ 1

end

B. High-level Decision-Making

We implement our high-level decision-making agent πθ as
a neural network parameterized by θ, which we train using
reinforcement learning.

Our action space follows from Dong et al. [1], [2],
[7] in which the output of πθ will be a discrete action
atε{vlead, v2fore, v1fore, v1rear} corresponding to a vehicle to
which to distance-keep.

C. Low-level Control

We implement our low-level controller as a simple pro-
portional controller on the acceleration and heading of the
autonomous vehicle. Given a vehicle to distance-keep to
from πθ, our controller C outputs acceleration and heading
commands for the ego-vehicle according to Algorithm 2.

An example controller is presented in Algorithm 2. At a
high level, the controller causes the ego-vehicle to distance-
keep to a point slightly behind the target vehicle in the
longitudinal direction. We calculate this value as xtarget −
xego−xmin, where xtarget−xego is the longitudinal distance
between the vehicles. By subtracting a safety distance xmin,
our controller produces accelerations to distance-keep xmin

Algorithm 2: Low-level controller =
C(sego, yhost, ymerge, starget)

Input: State of ego vehicle (xego, yego, θego), target
vehicle (xtarget, ytarget, θtarget) and lateral
distances to centerlines of host and merge
lanes yhost, ymerge).
Hyperparameters for minimum safe
longitudinal distance xmin, limits on turn rate
ωmax and acceleration amin, amax, merge
point location (xmp, ymp) and control
frequency dt.

Output: Acceleration and steering at and θt

at+1 = Ka(xtarget − xego − xmin)

θt+1 =

{
Kθ(yego − ymerge) if xego < xmp

Kθ(yego − yhost) if xego > xmp
at+1 = clip(at+1, amin, amax)
θt+1 = clip(θt+1, θt − ωmax ∗ dt, θt + ωmax ∗ dt)
return at+1, θt+1

behind the target vehicle. The controller also causes the ego-
vehicle to move toward the target lane centerline in the lateral
direction. Similarly, our controller drives yego − ylane to 0,
where ylane will be either the on-ramp or the target lane,
depending if the vehicle has passed an arbitrary merge point.
Since the target lane changes when the vehicle passes the
merge point, the controller is able to execute the merge.
Accelerations are clipped within ±4.25m/s to ensure that
controller actions are executable by real vehicles, and head-
ings are clipped based on turn rate to ensure smooth lane
transitions.

D. Algorithm

We use Advantage Actor-Critic (A2C) [18] to train our
high-level policy. We also implemented several Q-learning-
based approaches, and found that they significantly under-
performed the policy gradient-based approaches.

VI. IMPLEMENTATION

A. Environment

The merging scenarios for training were obtained from the
NGSIM dataset [13]. NGSIM contains two sets of human
driving trajectories - one is extracted from US Highway
101 and the other from Interstate 80. Both datasets contain
an on-ramp to extract merging scenarios from. Additionally,
both datasets were collected around rush hour, and contain
various degrees of traffic density. The varying degree of
traffic density ensures that the scenarios provide a variety of
challenging merge scenarios for the ego-vehicle to negotiate.
Data are recorded at 10Hz.

Individual merging scenarios were extracted from NGSIM
by identifying all vehicles that start in the merge lane. A
vehicle is chosen from this set to be the ego-vehicle. Vehicles
that do not enter either the host lane or merging lane are
removed from the scenario. Additionally, vehicles behind the

ego-vehicle in the merge lane are removed from the scenario.
The remaining vehicles are replayed directly from the data.
In total, there are 402 different merging scenarios, of which
we hold out 127 (32%) for testing.

B. Control using HRL

We choose to run our high-level agent at 1Hz and low-level
controller at 10Hz (to match NGSIM). Both the controller
and agent use the observation generated from the environ-
ment to compute their corresponding actions. We instantiate
the low-level controller and high-level agent and train the
high-level agent with the hyperparameters specified in Tables
I and II.

TABLE I
HYPERPARAMETERS FOR LOW-LEVEL CONTROLLER

Hyperparamter Value Range Units
Acceleration Kp (Ka) 1.5 ±1.0

Minimum safe distance (xmin) 4 ±2.0 m
Min/Max Acceleration (amin, amax) ±4.25 ±0.0 m/s2

Steering Kp (Kθ) 2.0 ±1.0
Steer rate threshold (ωmax) 15 ±10.0 deg/s

TABLE II
HYPERPARAMETERS FOR HIGH-LEVEL AGENT

Hyperparamter Value
Neural Network Architecture 2 × [Dense(128)]

Training Steps 6× 106

Activation Function Tanh
Entropy Regularizer 0.01

Critic network updates/policy update 80
Optimizer Adam [19]

Learning Rate 5× 10−4

Discount Factor 0.99

VII. RESULTS AND DISCUSSION

A. Baselines

We compare our work to MML-PGM by Dong et al.
[2]. This method is selected because of its ability to handle
multiple merging vehicles at once, which is more in line with
the simulation environments that we evaluate our results on.
We also compare our approach to the slot-based approach in
Urmson et al. [6] to verify that our high-level policy yields
improvement over rule-based methods for merging.

We also compare our approach to an approach that
learns low-level control (i.e., acceleration commands on
a fixed path) on real-world data. We use A2C to train
a policy that uses an action space inspired by Hu et
al. [3], where the agent chooses an action from the set
∆a = {−1,−0.5, 0,+0.5,+1}m2 with additional actions
that instantaneously set the acceleration to either 0m/s2 or
−4m/s2. The low-level policy runs at 5hz. We also incor-
porate cooperativeness estimates based on the CIDM model
proposed by Bouton et al. [4] into the agent’s observation
space.

Our RL-based approach is also validated with noise in both
the observation space and controller space. Observation noise
was implemented as Gaussian noise. Controller noise was
implemented by uniformly sampling controller parameters

from the ranges specified in Table I. In Table III, all policies
were trained and tested without noise. In Table IV, all
policies were trained as indicated by the method and tested
as specified by the column.

We also varied the coefficients in our reward function to
explore the effect that each term has on the policy’s overall
success. The success term provides a sparse reward that is
directly related to the task, while the forward progress (FP)
term provides a dense reward that does not explicitly reward
successful merging. To explore the effect that each term has
on the overall success rate, we ran an experiment each where
we set the coefficient on one of these terms to 0 and report
the results in Table V.

All approaches are validated on every held-out trajectory
(n=127) across 10 random seeds. A hyperparameter search
was performed individually on each RL-based approach and
the maximum performance on the held-out trajectories is
reported.

TABLE III
COMPARISON OF HRL TO EXISTING METHODS ON NGSIM (ON-RAMP)

Method Collision Rate
Low-level RL 60.0%

Slot [6] 12.9%
MML-PGM [2] 9.9%

HRL (Ours) 4.2%

TABLE IV
PERFORMANCE OF HRL WITH OBS AND CONTROLLER NOISE ON

NGSIM (ON-RAMP)

Method w/o Noise w/ Noise (std=1)
HRL 4.2% 4.5%

HRL + obs noise (std=1) 5.2% 5.4%
HRL + obs noise (std=3) 8.9% 8.7%

HRL w/ C noise 4.9% 5.1%

TABLE V
PERFORMANCE OF HRL WITH VARYING REWARD COEFFICIENTS ON

NGSIM (ON-RAMP)

Method Collision Rate
FP + Success 4.2%

FP, Success = 0 8.2%
Success, FP = 0 9.5%

B. Results and Discussion

Overall, we find that learning of high-level actions out-
performs other methods in terms of collision rate. Noting
Table III, we can see that our hierarchical approach achieves
a lower collision rate of 4.2% compared to the learned PGM
approach (9.9%) and the slot-based approach (12.9%). We
note that no method achieves a collision rate of 0. Since data
are replayed from NGSIM, the neighboring vehicles do not
necessarily respond to the ego-vehicle, as a human would.

In particular, we observe that there is a significant disparity
(∼ 55%) in the performance of an RL agent trained with
high-level actions and one trained with low-level actions.
While a low-level action space has been shown to work
effectively on simulated driver data [3], [4], we believe that
the complexity of real human driving compared to simulated

models of human behavior makes it much more difficult to
learn in a low-level action space. Using temporally-extended
actions via a controller allows for better exploration of the
environment and shortens the horizon of the problem, thus
making it easier to solve with RL.

From Table IV, we observe that the performance of the
hierarchical approach is largely unaffected by Gaussian noise
in the observation space (values of the observations fell in
the range [±50], and collision rate remained within 0.5% of
the collision rate without noise). We observe that training
the policy with noisy observations did not yield a significant
difference in performance, even when testing with noisy
observations. In Table V, we can observe that using both
the dense and sparse rewards yields better performance than
either reward alone.

As mentioned before, our approach bears some similarity
to the Semi-Markov Decision Process defined by Bradtke et
al. [17], and the options framework described by Sutton et
al. [16]. Our approach can also be viewed as an extension
of Dong et al.’s MML-PGM [2] in a reinforcement learning
setting. Both our approaches and MML-PGM rely on a low-
level controller to execute high-level decisions as determined
by some decision-making mechanism. We can thus think of
the policy network that we train using RL as serving an
equivalent function to the rules and yield prediction used by
MML-PGM.

VIII. CONCLUSION

We have presented a study on using reinforcement learning
to execute merging maneuvers on real highway data. Our
study shows that reinforcement learning can be used to
execute competent merging behaviors at a lower collision
rate than other methods. Our study also shows that learning
a high-frequency, low-level action space using RL on real
data is challenging, and present learning hierarchically with
a low-level controller as a potential solution.

A potential benefit of our approach is that it is agnostic
to the low-level control scheme, and can thus benefit from
better controllers, such as the model-predictive control used
in Urmson et al. [6]. Further work could include applying
hierarchical techniques to other scenarios. We believe that
learning the low-level options along with the high-level
policy may be beneficial, depending on the scenario.

IX. APPENDIX

Due to the disparity in velocity between the vehicles in the
host and merging lane (in general, the traffic in the merging
lane was much faster than that of the host lane), we observed
that the PGM method provided by Dong et al. [1], [2] yielded
aggressive merging behaviors. We were able to improve the
performance of the PGM method to the values given in the
paper by clipping accelerations outputted by the low-level
controller to {−4.25m/s2, 3.25m/s2} instead of the original
{−4.25m/s2, 4.25m/s2}. Our scenarios also did not make
the guarantee of having a lead vehicle. As such, we modified
the MML-PGM algorithm to default to PGM (i.e., distance-
keep to the last vehicle predicted to not yield) in the absence

of a leading vehicle, or if the leading vehicle was beyond a
distance of 25m.

X. ACKNOWLEDGEMENTS

The authors would like to thank Zhiqian Qiao and
Christoph Killing for their valuable discussions on past work
in ramp merging and on reinforcement learning.

REFERENCES

[1] C. Dong, J. M. Dolan, and B. Litkouhi, “Intention estimation for ramp
merging control in autonomous driving,” in 2017 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2017, pp. 1584–1589.

[2] ——, “Interactive ramp merging planning in autonomous driving:
Multi-merging leading pgm (mml-pgm),” in 2017 IEEE 20th Inter-
national Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2017, pp. 1–6.

[3] Y. Hu, A. Nakhaei, M. Tomizuka, and K. Fujimura, “Interaction-aware
decision making with adaptive strategies under merging scenarios,”
arXiv preprint arXiv:1904.06025, 2019.

[4] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Cooperation-aware reinforcement learning for merging in dense traf-
fic,” arXiv preprint arXiv:1906.11021, 2019.

[5] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating
driver behavior with generative adversarial networks,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 204–211.

[6] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[7] C. Dong, J. M. Dolan, and B. Litkouhi, “Smooth behavioral estimation
for ramp merging control in autonomous driving,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1692–1697.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[9] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical
decision making for lane changing with deep reinforcement learning,”
2017.

[10] S. Aradi, “Survey of deep reinforcement learning for motion planning
of autonomous vehicles,” arXiv preprint arXiv:2001.11231, 2020.

[11] P. Wang and C.-Y. Chan, “Formulation of deep reinforcement learning
architecture toward autonomous driving for on-ramp merge,” in 2017
IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2017, pp. 1–6.

[12] P. Wolf, K. Kurzer, T. Wingert, F. Kuhnt, and J. M. Zollner, “Adaptive
behavior generation for autonomous driving using deep reinforcement
learning with compact semantic states,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2018, pp. 993–1000.

[13] “Next generation simulation (ngsim).” [Online]. Available:
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

[14] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[15] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems, 2000, pp. 1008–1014.

[16] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[17] S. J. Bradtke and M. O. Duff, “Reinforcement learning methods for
continuous-time markov decision problems,” in Advances in neural
information processing systems, 1995, pp. 393–400.

[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

