
Unsupervised Reinforcement Learning in Environments with Strong Priors

Samuel Triest 1

Abstract
In practice, deep reinforcement learning algo-
rithms have difficulty scaling to tasks with long
time horizons and tend to require a large number
of environment interactions in order to achieve
acceptable performance. Unsupervised reinforce-
ment learning addresses these issues by learning a
set of skills that can be reused to accelerate learn-
ing of more complex downstream tasks. While
prior work focuses on information-theoretic meth-
ods that are agnostic to both task and environment,
we argue that environment-specific priors exist
and that it is beneficial to incorporate them into
the skill discovery process. Using the information-
theoretic objectives of unsupervised RL, we pro-
vide a simple mechanism for incorporating priors
into skill discovery and show that they have a pos-
itive impact on the skills learned by an RL agent,
as well as performance on downstream planning
tasks.

1. Introduction
Unsupervised reinforcement learning is an RL technique
that has emerged in the last few years whose goal is to teach
agents to learn a diverse set of skills in an environment
without access to a reward function. This technique has
promise in allowing agents to learn new tasks more quickly
by using unsupervised RL as a pre-training step.

In practice, it is often the case that algorithm designers
know some information about the agent’s environment a
priori (e.g. a cooking robot should hold its tools at cer-
tain orientations) or that certain actions in the environment
may be undesirable, or even unsafe (e.g. an autonomous
vehicle should not drive off the road). To address these
potential issues, we propose augmenting the information-
theoretic objectives used in traditional unsupervised RL
with environment-specific priors in order to obtain a more
focused set of skills to use for learning tasks at test-time.

*Equal contribution 1Computer Science Department, University
of Rochester, Rochester, NY, USA. Correspondence to: Samuel
Triest <striest@u.rochester.edu>.

2. Related Work
Gregor et al. (Gregor et al., 2016) describe mutual informa-
tion as a useful objective for unsupervised RL algorithms
to learn skills that result in a diverse set of states between
skills, while having each skill be precise. Mathematically,
given a set of skills Z, they represent inter-skill diversity
using the entropy H(sf) of the final state distribution and
measure skill precision as the log-probability of a final state
sf , given a skill z ∈ Z. When averaged over all states and
skills, the resulting objective is the mutual information of
final states sf and skills z, or I(Z, sf |s0) =

H(sf |s0)−H(sf |z, s0) (1)

= H(z|s0)−H(z|sf , s0) (2)

As noted by the authors, computing p(sf |s0) (which is a
requisite step in computing H(sf |z, s0)) is impractical as
it requires integration over the skill z. Instead, a computa-
tionally tractable solution is reached by using equation 2.
The first term is easily computable, while relaxing mutual
information to the variational bound (Mohamed & Rezende,
2015) allows the use of a learned function approximator
q(z|sf , s0) to estimate the second term. This results in
a practical algorithm called Variational Intrinsic Control
(VIC).

Diversity Is All You Need (DIAYN) (Eysenbach et al., 2018)
uses a similar information-theoretic approach to learning
skills by training a policy π conditioned on a latent variable
z to maximize the following:

I(S;Z) +H(A|S)− I(A;Z|S) = (3)

H(Z)−H(Z|S) +H(A|Z, S) (4)

Additional terms are added to the objective of VIC as to
minimize the direct effect of actions on the objective. The
second term encourages the policy to take actions randomly,
and the third term encourages the policy to keep actions from
increasing the discriminability of Z. This ultimately results
in an additional term in the practical objective (Equation
4), which is implicitly solved for by using Soft Actor-Critic
(SAC) (Haarnoja et al., 2018a) on the objective of VIC.
DIAYN also differs from VIC in its use of all states in
the objective (instead of final states), as well as sampling
uniformly from the distribution of skills, instead of learning
it.

Unsupervised Reinforcement Learning in Environments with Strong Priors

Eysenbach et al. discuss using a function of state f(s) (i.e.
train q(z|f(s)) instead of q(z|s)) to deal with priors. This
inherently focuses the search on subspaces of the state space.
They show improved results in high-dimensional tasks by
encoding prior information as to what skills are useful via
their choice of subspace.

Achaim et al. (Achiam et al., 2018) use an autoencoder-
based approach to learning diverse skills. That is, they
sample a context variable z ∼ Z and use it to condition a
policy πθ(·|s, c). The trajectory τ produced by the policy is
used as input to a decoder function Dψ (also referred to as
the discriminator by other work) that attempts to reconstruct
the context variable z. To train the policy and decoder, they
maximize the following objective:

J(θ, ψ) = E
c∼C

[E
τ∼πθ,c

[log(Dψ(c|τ))] + αH(π)] (5)

Their practical algorithm, Valor, uses this objective to op-
timize a policy to learn distinct skills, as in prior work.
However, they train their discriminator to predict context
given entire trajectories, as opposed to states.

Florensa et al. (Florensa et al., 2017) use a hand-designed
reward and mutual information regularization to learn a skill
repertoire to improve exploration on downstream tasks.

Sharma et al. (Sharma et al., 2020) incorporate model-
based reinforcement learning, which allows skills to be used
in planning algorithms. They incorporate parameterized
distribution of next state, given current state and latent code
qφ(s′|z, s) and train this, as well as a policy πθ that is trained
to maximize the following:

log(
qφ(s′|s, z)

ΣLi=1qφ(s′|s, zi)
) + log(L)

where each zi is sampled from the distribution of latent
codes. Intuitively, this reward incentivizes the policy to
transition to the same state for a given latent code zi, and
different states for different latent codes. This achieves
the desired effect of creating reproducible skills zi that are
mutually distinct.

Green et al. (Green & Kelly, 2007) also address the issue
of state-covering paths from a traditional planning perspec-
tive. Unlike the previous RL-based approaches, Green et al.
work directly in path-space to minimize the dispersion (low
dispersion is preferable) of a set of paths. These paths are
then sampled from for downstream tasks.

3. Unsupervised Reinforcement Learning as
Auto-Encoding

We would like to draw additional attention to the formula-
tion of unsupervised reinforcement learning as variational

auto-encoding (Kingma & Welling, 2013) to note that the
notion of incorporating priors into unsupervised reinforce-
ment learning algorithms falls out naturally from the theory
provided in (Achiam et al., 2018). Achiam et al. draw a
one-to-one correspondence between option discovery and
the β-VAE objective of (Higgins et al., 2017):

E
x∼D

[E
z∼qφ(·|x)

[log(pθ(x|z))]− βDKL(qφ(z|x)||p(z))]

(6)
where z is the latent variable, x is the data, and p and q are
the decoder and encoder respectively. Achiam et al. note
that z corresponds to trajectories τ , x corresponds to skills
c, the decoder p corresponds to the discriminator (which
maps from trajectories to skills), and the policy π, along
with the underlying MDP correspond to the encoder q.

Of particular interest is the regularization term in the ob-
jective that attempts to minimize the KL-divergence of the
latent variable to some arbitrary distribution. Given that
the latent variable in unsupervised RL actually corresponds
to trajectories τ , there is a mechanism inherently present
in biasing the trajectory distribution of our skills towards
particular distributions. Achiam et al. show that traditional
entropy regularization corresponds to minimizing the KL-
divergence to the trajectory distribution produced by a pol-
icy that uniformly samples from the action space in every
state (yielding Equation 5). We apply a similar proof in
the following section to illustrate that we can formulate an
objective that minimizes KL-divergence to the trajectory
distributions of arbitrary policies.

4. Mathematical Derivation
We are able to incorporate priors into the unsupervised learn-
ing objective by training an RL agent to maximize the fol-
lowing reward:

r(s, a, s′) = log(Dψ(c|s′)) + βlog(πprior(a|s)) (7)

4.1. The Unsupervised Reward

The unsupervised reward log(Dψ(s′)) follows directly from
the implementation of DIAYN from Eysenbach et al. (Ey-
senbach et al., 2018). By training the agent to maximize the
performance of the discriminator, the agent is encouraged
to visit unique regions of the state space depending on the
context variable.

4.2. The Prior Reward

To learn in the presence of environment specific priors, we
add an additional term βlog(πprior(a|s)) that encourages
the learned policy to minimize its KL-divergence to some
prior, encoded as a policy. We note that the asymmetry of

Unsupervised Reinforcement Learning in Environments with Strong Priors

KL-divergence will cause skills to exhibit mode-seeking
behavior. That is, they will concentrate highly on peaks
in the prior’s trajectory distribution without attempting to
cover it.

We want to minimize the KL-divergence of the trajec-
tory distribution induced by πθ(a|s, c) to the trajectory
distribution of πprior(a|s). We can evaluate this
DKL(p(τ |πθ)||p(τ |πprior)) as:

Definition of KL-divergence:

DKL(p(τ |πθ)||p(τ |πprior)) = E
τ∼πθ

[log(
p(τ |πθ)

p(τ |πprior)
)]

Expand probability of τ in terms of state transition model
and policy:

= E
τ∼πθ

[log(
µ0(s0)Πt=T−1

t=0 p(st+1|st, at)πθ(at|st, c)
µ0(s0)Πt=T−1

t=0 p(st+1|st, at)πprior(at|st)
)]

Cancel like terms:

= E
τ∼πθ

[log(
Πt=T−1
t=0 πθ(at|st, c)

Πt=T−1
t=0 πprior(at|st)

)]

Log of quotient as difference of logs:

= E
τ∼πθ

[Σt=T−1t=0 log(πθ(at|st, c))−Σt=T−1t=0 log(πprior(at|st))]

Split expectation:

= E
τ∼πθ

[Σt=T−1t=0 log(πθ(at|st, c)]− E
τ∼πθ

[Σt=T−1t=0 log(πprior(at|st)))]

Definition of entropy and cross-entropy and definition of
stationary policy:

= T (−H(πθ(·, |s, c)) +Hπθ (πprior(·|s))) (8)

Using this, we can see that if we want our learned skills
to minimize the KL-divergence to a trajectory distribution
induced by a prior, we need to minimize equation 8.

4.3. Deriving a Practical Objective

We can thus incorporate priors into unsupervised reinforce-
ment learning by using the following as our objective:

J(θ, ψ) = E
τ∼πθ

[log(Dψ(c|τ))+α(−Hπprior (τ)+H(π|c))]
(9)

The optimization problem thus becomes:

θ∗, ψ∗ = arg max
θ,ψ

E
τ∼πθ

[log(Dψ(c|τ))+α(−Hπprior (τ)+H(π|c))]

= arg max
θ,ψ

E
s∼πθ

[log(Dψ(c|s)+αlog(πprior(s))+αH(π(·|s, c))]

(10)

As mentioned in other work, ψ can be solved for via a
decoder network that is trained through standard supervised
learning (as the context variables are provided). We can
solve for θ by solving a reinforcement learning problem with
the reward provided in equation 7. Note that we assume that
some max-entropy RL algorithm such as SAC (Haarnoja
et al., 2018a) is being used. As such, we omit the entropy
term from the reward. Additionally, we include a baseline
of −log(p(c)) described in (Eysenbach et al., 2018). Lastly,
we deviate from the theory in our implementation and use
a different, fixed coefficient β to scale the influence of the
prior on learned skills.

We can thus arrive at Algorithm 1 for unsupervised RL with
priors:

5. Experimental Setup
We provide several experiments to validate the efficacy of
including priors in unsupervised reinforcement learning.

5.1. Algorithmic Implementation

5.1.1. DISCRIMINATOR

Following the implementation of (Eysenbach et al., 2018) ,
our discriminator is implemented as a simple feed-forward
neural network with two fully-connected layers of 300 neu-
rons each (full details are provided in the appendix). The
network accepts as input the agent’s observation and out-
puts a categorical distribution over the context space. Like
in (Eysenbach et al., 2018), out discriminator can be con-
ditioned on subspaces of the observation space to decide
which features of the observation space the agent should
learn diverse skills over.

5.1.2. POLICY

Like the discriminator, our policy is a two-layer feed-
forward neural network with 300 neurons per layer. Per
the implementation of SAC (Haarnoja et al., 2018a), the
network accepts as input the agent’s observation and a con-
text variable, and outputs a squashed Gaussian over the
action space. We train this network using the version of
SAC provided in (Haarnoja et al., 2018b), which does not
parameterize the V function of the underlying POMDP, and
automatically tunes the value of α.

5.2. Environments

We consider two types of environments for this work:

1. Gridworld environments

2. Autonomous driving-based environments

Unsupervised Reinforcement Learning in Environments with Strong Priors

Algorithm 1 Unsupervised RL with priors
Input: Untrained networks π,Q1, Q2, D with params θ, φ1, φ2, ψ, learning rates λθ, λφ, λψ . Prior πprior, prior weight β
while not converged do

c ∼ p(c), s ∼ p0(s) / Sample context and initial state
for k ← 1 to steps per iteration do
s′, t ∼ π(·|c, s0) / Roll out trajectory
D = D ∪ {s, a, s′, t, c} / Add to replay buffer
if t then
c ∼ p(c), s ∼ p0(s) / sample new trajectory

end
end
for i← 1 to update steps per iteration do

s, a, s′, t, c ∼ D / sample from replay buffer
ψ ← ψ + λψ(∇ψJψ(Dψ(s), c)) / update D
r̂ = log(Dψ(c, s′))− log(p(c)) + βlog(πprior(a|s)) / pseudo-reward
θ, φ1, φ2 ← SAC(s, a, s′, r̂, t) / use supervised RL to maximize the pseudo-reward

end
end

5.2.1. GRIDWORLDS

We include gridworld environments as a baseline to confirm
that the theory provided in Section 4 translates smoothly
to the practical algorithm. Our gridworld forms an MDP
(S,A, T , d0, γ), with the omission of a reward function
R. Our state space is S = {s|s ∈ R2, s ∈ [−10, 10] ×
[−10, 10]}. That is, our agent is a point-mass restricted to
states within a 20x20 box centered at the origin. Similarly,
our action space is A = {a|a ∈ R2, a ∈ [−1, 1]× [−1, 1]}.
The MDP transitions deterministically according to st+1 =
st + at, where at and at+1 are projected to the closest point
in S,A if they fall outside the appropriate spaces. The
MDP terminates after a certain number of steps t are taken
(we choose t = 40 for our experiments). We also set our
discount factor γ = 0.95.

5.2.2. DRIVING ENVIRONMENTS

In our experiments, we also consider learning a repertoire of
skills for a series of environments based on highway driving.
We consider highway driving in particular because highway
driving has a number of easily explainable priors for which
a number of well-understood controllers exist.

We formulate highway driving with the ego-vehicle con-
trolled using RL as a POMDP (S,A, T ,O, O, γ, d0). Our
state space S = {s|s ∈ R4} consists of the vehicle’s posi-
tion, orientation and velocity in a highway-relative frame.
Our action space A = {a|a ∈ R2} consists of an accel-
eration and turn rate command. The transition model T
forward simulates the ego-vehicle’s state according to the
Ackermann-steered vehicle motion model. The vehicle re-
ceives as an observation its lateral position on the highway,
as well as its heading, velocity, lateral position in-lane, and

an integer corresponding to its current lane (1 for the right-
most lane, |lanes| for the leftmost, etc.). We set γ = 0.99,
and terminate an episode if the vehicle drives off-road, or if
it successfully drives 200m.

We consider highway driving to be an interesting environ-
ment to consider for unsupervised RL with priors because
the general rules of highway driving impose a prior on which
types of skills are more desirable. These priors include:

1. Vehicles should stay in their lane.

2. Vehicles should stay a safe distance behind other vehi-
cles.

Controllers can be designed that let vehicles exhibit these
behaviors (though a single controller cannot be used to learn
options). These controllers can easily be represented as
stochastic policies that can be incorporated into the unsuper-
vised RL paradigm.

6. Experiments and Results
6.1. Gridworlds

To verify the efficacy of incorporating priors into unsu-
pervised reinforcement learning, we first ran DIAYN as
a baseline on the gridworld environment. We chose to learn
ten skills. Figure 1 illustrates the resulting skill repertoire
(each color represents a different skill) once the algorithm
achieved maximum reward. As we can see, all skills follow
the same general behavior of quickly moving to a particular
point in the state space and staying there.

Given the low dimension of the state space in this environ-

Unsupervised Reinforcement Learning in Environments with Strong Priors

Figure 1. The set of skills learned from DIAYN (Eysenbach et al.,
2018)

ment, taking subspaces of the state space to encode a prior
is impractical (note that in the DIAYN paper, while they use
the notation f(s), they explicitly refer to subspaces of the
observation space). We show the results of two different pri-
ors in this work. We will refer to these priors as the diagonal
prior and row prior. The diagonal prior was designed as a
simple prior on desirable types of behaviors. The row prior
was designed as a simple prior on regions of the state space.
The diagonal and row priors were represented as stochastic
Gaussian policies given in Algorithms 2 and 3.

Algorithm 2 Diagonal Prior for Gridworld
Input: State x, y
µx = 0.5sign(x)
µy = 0.5sign(y)
σx = 0.2
σy = 0.2

return N (

[
µx
µy

]
,

[
σx 0
0 σy

]
)

Algorithm 3 Row Prior for Gridworld
Input: State x, y, Height bounds yupper, ylower
µx = 0.0

µy =


−0.5 if y > yupper

0.5 if y < ylower

0.0 otherwise
σx = 1.0

σy =

{
0.1 if y > yupper or y < ylower

1.0 otherwise

return N (

[
µx
µy

]
,

[
σx 0
0 σy

]
)

As we can see, the priors achieve the desired effect of alter-
ing the learned skill repertoire. In Figure 6.1, we can see that

the diagonal prior caused all learned skills to move towards
one of the four corners of the environment. Furthermore,
though all skills terminate near a corner, the DIAYN objec-
tive encourages the skills to approach the corners at different
angles. (e.g. the green, red and purple skills reach the top-
right from roughly 60◦, 45◦ and 30◦ angles, respectively).
In Figure 6.1, we can see that the learned skills maintain
the behavior observed in the baseline experiment (find a
location and stay there), but now do so within y ∈ [−3, 3].

Figure 2. The set of skills learned from adding a diagonal prior to
DIAYN

Figure 3. The set of skills learned from adding a row prior to DI-
AYN

6.2. Driving

We run a number of unsupervised RL experiments on driving
environments, both with and without vehicles. We first
report a series of experiments on trying to run unsupervised
RL without priors in the absence of other vehicles. We first
explored learning ten skills on a five-lane highway using
various subspaces of the observation space. Figures 4, 5
and 6 illustrate the learned skill repertoire at convergence

Unsupervised Reinforcement Learning in Environments with Strong Priors

when using the full observation space (Figure 4), velocity,
lane id and lane boundaries (Figure 5) and velocity and
lane id (Figure 6). Figures 5 and 6 illustrate a potential
concern with not incorporating a prior. When we include the
vehicle’s lane position, the unsupervised RL algorithm will
attempt to learn skills that partition along that dimension.
As such, we get many skills that drive out of lane as a result
of maximizing the objective (Figure 5). However, if we omit
the lane position, it no longer has an effect on the reward,
and trajectories oscillate within a lane as a result (Figure 6).

Figure 4. The set of skills learned from running DIAYN on the full
observation space

Figure 5. The set of skills learned from running DIAYN on the
vehicle’s velocity, current lane, and distances to lane line

To address this, we incorporate a lane-following prior based
on pure pursuit tracking of the current lane’s centerline. We
center a Gaussian around the controller’s output and feed
it into the unsupervised RL algorithm as a prior. Figure 7
shows that doing so has the desired effect of straightening
out the learned skills. One thing to note is that although
running the pure pursuit controller as is would only result in
keeping to the center lane, the unsupervised RL algorithm’s

Figure 6. The set of skills learned from running DIAYN on the
vehicle’s velocity and current lane

objective causes the agent to break from the lane-following
controller in the early steps. As a result, the agent learns to
lane-change without a reward function.

Figure 7. The set of skills learned from adding a lane-keeping prior
to DIAYN

We also ran an experiment to learn skills in dense traffic.
Specific details on the experiment setup are provided in
the appendix. Overall, we found that these skills did not
lane-keep as well as the traffic-free skills.

6.3. Evaluation on Downstream Tasks

To quantify the effect of learning skills with a prior on down-
stream tasks, we constructed a highway navigation scenario
in which an agent is required to navigate to a random lane
using a set of learned skills to plan.

6.3.1. HIGHWAY NAVIGATION TASK

To be more specific, we consider a fairly simplistic highway
driving task in which the ego vehicle begins in a random

Unsupervised Reinforcement Learning in Environments with Strong Priors

Figure 8. The set of skills learned from running DIAYN with a
lane keeping prior in traffic

lane in a five-lane highway, and is expected to navigate
to a random target lane through randomly generated traf-
fic patterns. We observe that the analytical form of the
Ackermann-steered motion model makes this environment
amenable to traditional planning techniques, and choose
to directly plan using various skill repertoires instead of
learning a meta-policy.

Given the task, we use two primary metrics to evaluate the
usefulness of various skill repertoires; safety and efficiency.
We measure safety through the success rate of the planning
algorithm (i.e. does the vehicle reach the goal lane without
collision) and measure efficiency through the number of
samples the planning algorithm takes to find a solution, as
well as how long it takes to generate each sample.

For all experiments, we plan using a state-lattice planner,
where the motion primitives we use are the various skill
repertoires mentioned in the previous section. In particular
we consider the following sets of skills:

1. Skills learned from the minimum-dispersion method
of (Green & Kelly, 2007) (n=10)

2. Skills learned from DIAYN (Eysenbach et al., 2018)
on a traffic-free environment where the discriminator
is trained on lane id and velocity (n=10))

3. Skills learned from DIAYN with a lane-keeping prior
on a traffic-free environment, also conditioned on lane
id and velocity (n=10)

At each state, motion primitives are generated by forward-
simulating each skill for two seconds. A complete version
of the algorithm is provided in the appendix. We report the
results of each set of primitives over 1000 simulations each
in Table 1.

We note that the learned skill repertoires outperform the min-
dispersion repertoire in terms of success rate. We suspect
that this is due to the fact that the learned skills are adaptive
(i.e. are dependent on initial state), while the min-dispersion
skills are not. Since skills are trained to reach a particular
state distribution, errors in state from a previous skill can
be adjusted for, allowing for more reliable input sampling.
It can also be observed that adding the prior significantly
reduces the average amount of samples necessary. This is
expected, as all the skills with the prior follow the priors in
the environment, ultimately leading to improved exploration
(and thus fewer samples necessary).

We also note that real-time planning speed is an important
factor in the efficacy of these skills. In that regard, the
min-dispersion skill set has a significant advantage in that
sampling from it does not require the forward pass of a neu-
ral network. To account for the decreased performance of
the min-dispersion set, we increased the amount of paths in
the min-dispersion path set until its success rate approached
the success rate of the learned skills. Results are shown in
table 2.

7. Discussion and Future Work
We presented a potential method of incorporating priors into
unsupervised reinforcement learning through the addition
of controllers into the training process. We show that we
can encourage skills to exhibit certain behaviors or bias
skills to certain regions by adding an additional term to the
pseudo-reward provided in conventional unsupervised RL.
Overall, we find that while this approach performs well in
simpler environments, we had some difficulty scaling to
more complex ones (such as the dynamic obstacles in the
driving environment with traffic).

A limitation of our method is the need to represent the prior
as a policy. (Florensa et al., 2017) take a similar approach to
learning skills with a reward function and mutual informa-
tion. Arguably, while reward design is not a trivial problem,
designing a reward function is generally simpler than design-
ing a policy in environments where there are not existing
controllers. However, a potential advantage of explicitly
matching trajectory distributions is that it may be possible
to extract a prior from trajectory samples. In environments
such as highway driving, large corpora of unlabeled trajec-
tories exist (ngs; Krajewski et al., 2018). If we view these
trajectories as samples from an expert prior, we may be able
to train an agent to learn diverse, expert-like options.

References
Next generation simulation (ngsim). URL https://ops.
fhwa.dot.gov/trafficanalysistools/
ngsim.htm.

https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

Unsupervised Reinforcement Learning in Environments with Strong Priors

Table 1. Performance of Planner under Different Skill Repertoires
Skills Success Rate Avg Num. Samples Avg. Time per Sample

Min-Dispersion (1) 86% 140.5 5 µs
DIAYN (2) 96.1% 155.1 23 µs

DIAYN + prior (3) (Ours) 97.1% 90.2 23 µs

Table 2. Performance of the min-dispersion path sampler under different numbers of paths
Skills Success Rate Avg Num. Samples Avg. Time per Sample

Min-Dispersion (n=10) 86% 140.5 5 µs
Min-Dispersion (n=50) 91.2% 341.5 5 µs

Min-Dispersion (n=100) 93.0% 523.2 5 µs

Achiam, J., Edwards, H., Amodei, D., and Abbeel, P.
Variational option discovery algorithms. arXiv preprint
arXiv:1807.10299, 2018.

Coulter, R. C. Implementation of the pure pursuit path
tracking algorithm. Technical report, Carnegie-Mellon
UNIV Pittsburgh PA Robotics INST, 1992.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
arXiv preprint arXiv:1802.06070, 2018.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural
networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1704.03012, 2017.

Green, C. and Kelly, A. Toward optimal sampling in the
space of paths. In 13th International Symposium of
Robotics Research, volume 3, pp. 1. Citeseer, 2007.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. Iclr, 2(5):6, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Krajewski, R., Bock, J., Kloeker, L., and Eckstein, L. The
highd dataset: A drone dataset of naturalistic vehicle
trajectories on german highways for validation of highly
automated driving systems. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC),
pp. 2118–2125. IEEE, 2018.

Mohamed, S. and Rezende, D. J. Variational information
maximisation for intrinsically motivated reinforcement
learning. In Advances in neural information processing
systems, pp. 2125–2133, 2015.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. Dynamics-aware unsupervised skill discovery. In
Proceeding of the International Conference on Learning
Representations (ICLR), Addis Ababa, Ethiopia, pp. 26–
30, 2020.

Unsupervised Reinforcement Learning in Environments with Strong Priors

A. Experiment Details
Below, we list the hyperparameters for implementation of
DIAYN with priors.

Table 3. Hyperparameters for SAC
Hyperparamter Value

Network 2 × [Dense(300)]
Training Steps 3× 106

Activation Function Tanh
Optimizer Adam (Kingma & Ba, 2014)

Learning Rate 5× 10−4

Replay Buffer Size 1× 106

Soft Target Update 0.995
β 0.05

Target Entropy -2

Return curves are provided for the driving experiments.
Incorporating a prior has little effect on performance, while
incorporating traffic into the training process affects the
speed and convergence of learning significantly, regardless
of the prior.

B. Driving Environment Details
We include more details about our driving environment
below. We assume that the RL agent receives processed
inputs from some perception system and outputs controls
that are executed by a high frequency controller. Our agent
outputs actions at 5hz.

B.1. Observations of Other Vehicles

We choose to represent observations of other vehicles as a
fixed feature vector. For each vehicle observed, the agent
receives a vector [∆x,∆y, θ,∆v] corresponding to the dis-
placement from the ego-vehicle to the observed vehicle
along the direction of the highway (∆x) and orthogonal
to the direction of the highway (∆y), the heading of the
observed vehicle, and the difference in the two vehicles’
velocities. These observations are made for six vehicles, the
vehicles immediately in front and behind the ego vehicle
(or its projection) in the ego-vehicle’s lane, the lane imme-
diately to its left, or immediately to its right. If one of these
vehicles does not exist, a placeholder observation is used
instead.

B.2. Pure Pursuit Controller

For lane-following, we implement the pure pursuit con-
troller (Coulter, 1992). Since the pure pursuit controller
is deterministic, we center a Gaussian on its output with
standard deviation 0.1. We also scale the lookahead with
the ego-vehicle’s velocity to improve the stability of the

controller for high speeds.

B.3. Simulated Traffic

We simulated traffic patterns by randomly populating a win-
dow around the ego vehicle. This was accomplished by
randomly placing a vehicle every 25m with probability 0.4.
We then added an offset sampled from [1, 25]m as the ini-
tial position of the vehicle. All vehicles moved forward at
21m/s.

B.4. Planning Task

We ran our planning task by first initializing a random traffic
pattern, then assigning the ego vehicle to a random lane. We
then assigned another random lane as the goal lane. We
considered a state a goal state if the ego-vehicle’s lateral
position was within ±0.5m of the goal lane’s centerline and
its angle to the centerline was within ±0.05rad.

B.5. Planning Algorithm

Our planning algorithm was essentially a heuristic-based
search with an RRT using the set of skills as motion prim-
itives. We forward-simulated each skill for a number of
timesteps (10 timesteps at 5hz) and expanded the new state
if none of the forward-simulated states were in a collision
state. Our heuristic was the L2 norm of heading deviation
and lateral distance to the goal lane.

Figure 9. An example plan generated from learned skills with a
prior. The vehicle follows the curve. Different colors represent
different skills.

Unsupervised Reinforcement Learning in Environments with Strong Priors

Figure 10. Return curve for DIAYN without prior on highway driv-
ing

Figure 11. Return curve for DIAYN with prior on highway driving

Figure 12. Return curve for DIAYN with prior on highway driving
with traffic

Figure 13. Return curve for DIAYN with prior on highway driving
with traffic

